Star-Based a Posteriori Error Estimates for Elliptic Problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Star-Based a Posteriori Error Estimates for Elliptic Problems

We give an a posteriori error estimator for nonconforming finite element approximations of diffusionreaction and Stokes problems, which relies on the solution of local problems on stars. It is proved to be equivalent to the energy error up to a data oscillation, without requiring Helmholtz decomposition of the error nor saturation assumption. Numerical experiments illustrate the good behavior a...

متن کامل

Elliptic Reconstruction and a Posteriori Error Estimates for Parabolic Problems

It is known that the energy technique for a posteriori error analysis of finite element discretizations of parabolic problems yields suboptimal rates in the norm L∞(0, T ; L2(Ω)). In this paper we combine energy techniques with an appropriate pointwise representation of the error based on an elliptic reconstruction operator which restores the optimal order (and regularity for piecewise polynomi...

متن کامل

Residual type a posteriori error estimates for elliptic obstacle problems

under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we give an a posteriori error estimates with constitutive law for some obstacle problem. The error estimator involves some parameter ε appeared in some penalized equation.

متن کامل

A posteriori error estimates for nonlinear problems. Lr-estimates for finite element discretizations of elliptic equations

— We extend the gênerai framework of [18] for deriving a posteriori error estimâtes for approximate solutions of noniinear elliptic problems such ihat it also yields L'-error estimâtes. The gênerai results are applied to finite element discretizations of scalar quasilinear elliptic pdes of 2nd order and the stationary incompressible Navier-Stokes équations. They immediately yield a posteriori e...

متن کامل

A Posteriori Error Estimates for Elliptic Variational Inequalities

We derive hierarchical a posteriori error estimates for elliptic variational inequalities. The evaluation amounts to the solution of corresponding scalar local subproblems. We derive some upper bounds for the e ectivity rates and the numerical properties are illustrated by typical examples.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Scientific Computing

سال: 2013

ISSN: 0885-7474,1573-7691

DOI: 10.1007/s10915-013-9793-x